Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Virol ; 95(14): e0011121, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1358015

RESUMEN

The current fears of a future influenza pandemic have resulted in an increased emphasis on the development and testing of novel therapeutic strategies against the virus. Fundamental to this is the ferret model of influenza infection, which is critical in examining pathogenesis and treatment. Nevertheless, a precise evaluation of the efficacy of any treatment strategy in ferrets is reliant on understanding the immune response in this model. Interferon-inducible transmembrane proteins (IFITMs) are interferon-stimulated proteins shown to be critically important in the host immune response against viral infections. These proteins confer intrinsic innate immunity to pH-dependent viruses such as influenza viruses and can inhibit cytosolic entry of such viruses to limit the severity of infection following interferon upregulation. Mutations in IFITM genes in humans have been identified as key risk factors for worsened disease progression, particularly in the case of avian influenza viruses such as H7N9. While the IFITM genes of humans and mice have been well characterized, no studies have been conducted to classify the IFITM locus and interferon-driven upregulation of IFITMs in ferrets. Here, we show the architecture of the ferret IFITM locus and its synteny to the IFITM locus of other mammalian and avian species. Furthermore, we show that ferret IFITM1, -2, and -3 are functionally responsive to both interferon-α (IFN-α) and influenza virus stimulation. Thus, we show that ferret IFITMs exhibit interferon-stimulated properties similar to those shown in other species, furthering our knowledge of the innate immune response in the ferret model of human influenza virus infections. IMPORTANCE IFITM proteins can prevent the entry of several pH-dependent viruses, including high-consequence viruses such as HIV, influenza viruses, and SARS-coronaviruses. Mutations in these genes have been associated with worsened disease outcomes with mutations in their IFITM genes, highlighting these genes as potential disease risk factors. Ferrets provide a valuable tool to model infectious diseases; however, there is a critical shortage of information regarding their interferon-stimulated genes. We identified the putative ferret IFITM genes and mapped their complete gene locus. Thus, our study fills a critical gap in knowledge and supports the further use of the ferret model to explore the importance of IFITMs in these important diseases.


Asunto(s)
Hurones , Subtipo H1N1 del Virus de la Influenza A , Interferón-alfa/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Animales , Línea Celular , Secuencia Conservada , Modelos Animales de Enfermedad , Hurones/inmunología , Hurones/metabolismo , Hurones/virología , Humanos , Modelos Moleculares , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/metabolismo , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de Proteína , Regulación hacia Arriba
2.
J Virol ; 95(15): e0032721, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1305507

RESUMEN

The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains; previously C6orf106) was identified as a proviral factor for Hendra virus infection and was recently characterized to function as an inhibitor of type I interferon expression. Here, we have utilized transcriptome sequencing (RNA-seq) to define cellular pathways regulated by ILRUN in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of Caco-2 cells. We find that inhibition of ILRUN expression by RNA interference alters transcription profiles of numerous cellular pathways, including upregulation of the SARS-CoV-2 entry receptor ACE2 and several other members of the renin-angiotensin aldosterone system. In addition, transcripts of the SARS-CoV-2 coreceptors TMPRSS2 and CTSL were also upregulated. Inhibition of ILRUN also resulted in increased SARS-CoV-2 replication, while overexpression of ILRUN had the opposite effect, identifying ILRUN as a novel antiviral factor for SARS-CoV-2 replication. This represents, to our knowledge, the first report of ILRUN as a regulator of the renin-angiotensin-aldosterone system (RAAS). IMPORTANCE There is no doubt that the current rapid global spread of COVID-19 has had significant and far-reaching impacts on our health and economy and will continue to do so. Research in emerging infectious diseases, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is growing rapidly, with new breakthroughs in the understanding of host-virus interactions to assist with the development of innovative and exciting therapeutic strategies. Here, we present the first evidence that modulation of the human protein-coding gene ILRUN functions as an antiviral factor for SARS-CoV-2 infection, likely through its newly identified role in regulating the expression of SARS-CoV-2 entry receptors ACE2, TMPRSS2, and CTSL. These data improve our understanding of biological pathways that regulate host factors critical to SARS-CoV-2 infection, contributing to the development of antiviral strategies to deal with the current SARS-CoV-2 pandemic.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , COVID-19/metabolismo , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , Células CACO-2 , Catepsina L/biosíntesis , Catepsina L/genética , Chlorocebus aethiops , Humanos , Proteínas de Neoplasias/genética , Sistema Renina-Angiotensina , SARS-CoV-2/genética , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Células Vero
3.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1154425

RESUMEN

The global COVID-19 pandemic caused by SARS-CoV-2 has resulted in over 2.2 million deaths. Disease outcomes range from asymptomatic to severe with, so far, minimal genotypic change to the virus so understanding the host response is paramount. Transcriptomics has become incredibly important in understanding host-pathogen interactions; however, post-transcriptional regulation plays an important role in infection and immunity through translation and mRNA stability, allowing tight control over potent host responses by both the host and the invading virus. Here, we apply ribosome profiling to assess post-transcriptional regulation of host genes during SARS-CoV-2 infection of a human lung epithelial cell line (Calu-3). We have identified numerous transcription factors (JUN, ZBTB20, ATF3, HIVEP2 and EGR1) as well as select antiviral cytokine genes, namely IFNB1, IFNL1,2 and 3, IL-6 and CCL5, that are restricted at the post-transcriptional level by SARS-CoV-2 infection and discuss the impact this would have on the host response to infection. This early phase restriction of antiviral transcripts in the lungs may allow high viral load and consequent immune dysregulation typically seen in SARS-CoV-2 infection.


Asunto(s)
Citocinas/genética , Procesamiento Postranscripcional del ARN , Ribosomas/metabolismo , Ribosomas/virología , SARS-CoV-2/inmunología , Factores de Transcripción/genética , Animales , Antivirales/antagonistas & inhibidores , Línea Celular Tumoral , Chlorocebus aethiops , Biología Computacional , Citocinas/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/virología , Perfilación de la Expresión Génica , Interacciones Microbiota-Huesped , Humanos , Inmunidad Innata/genética , Pulmón/inmunología , Pulmón/virología , ARN Mensajero/metabolismo , RNA-Seq , Ribosomas/genética , SARS-CoV-2/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Células Vero
4.
Vaccines (Basel) ; 9(1)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1088962

RESUMEN

The current pandemic has highlighted the ever-increasing risk of human to human spread of zoonotic pathogens. A number of medically-relevant zoonotic pathogens are negative-strand RNA viruses (NSVs). NSVs are derived from different virus families. Examples like Ebola are known for causing severe symptoms and high mortality rates. Some, like influenza, are known for their ease of person-to-person transmission and lack of pre-existing immunity, enabling rapid spread across many countries around the globe. Containment of outbreaks of NSVs can be difficult owing to their unpredictability and the absence of effective control measures, such as vaccines and antiviral therapeutics. In addition, there remains a lack of essential knowledge of the host-pathogen response that are induced by NSVs, particularly of the immune responses that provide protection. Vaccines are the most effective method for preventing infectious diseases. In fact, in the event of a pandemic, appropriate vaccine design and speed of vaccine supply is the most critical factor in protecting the population, as vaccination is the only sustainable defense. Vaccines need to be safe, efficient, and cost-effective, which is influenced by our understanding of the host-pathogen interface. Additionally, some of the major challenges of vaccines are the establishment of a long-lasting immunity offering cross protection to emerging strains. Although many NSVs are controlled through immunisations, for some, vaccine design has failed or efficacy has proven unreliable. The key behind designing a successful vaccine is understanding the host-pathogen interaction and the host immune response towards NSVs. In this paper, we review the recent research in vaccine design against NSVs and explore the immune responses induced by these viruses. The generation of a robust and integrated approach to development capability and vaccine manufacture can collaboratively support the management of outbreaking NSV disease health risks.

5.
Front Immunol ; 11: 559113, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-868963

RESUMEN

As the recent outbreak of SARS-CoV-2 has highlighted, the threat of a pandemic event from zoonotic viruses, such as the deadly influenza A/H7N9 virus subtype, continues to be a major global health concern. H7N9 virus strains appear to exhibit greater disease severity in mammalian hosts compared to natural avian hosts, though the exact mechanisms underlying this are somewhat unclear. Knowledge of the H7N9 host-pathogen interactions have mainly been constrained to natural sporadic human infections. To elucidate the cellular immune mechanisms associated with disease severity and progression, we used a ferret model to closely resemble disease outcomes in humans following influenza virus infection. Intriguingly, we observed variable disease outcomes when ferrets were inoculated with the A/Anhui/1/2013 (H7N9) strain. We observed relatively reduced antigen-presenting cell activation in lymphoid tissues which may be correlative with increased disease severity. Additionally, depletions in CD8+ T cells were not apparent in sick animals. This study provides further insight into the ways that lymphocytes maturate and traffic in response to H7N9 infection in the ferret model.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Interacciones Huésped-Patógeno/inmunología , Subtipo H7N9 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/inmunología , Animales , Células Presentadoras de Antígenos/patología , Betacoronavirus/inmunología , Linfocitos T CD8-positivos/patología , COVID-19 , Infecciones por Coronavirus/inmunología , Modelos Animales de Enfermedad , Hurones , Humanos , Infecciones por Orthomyxoviridae/patología , Pandemias , Neumonía Viral/inmunología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA